Molecular cloning of ten distinct hypervariable regions from the cellulose synthase gene superfamily in aspen trees.

نویسندگان

  • Xiaoe Liang
  • Chandrashekhar P Joshi
چکیده

Recent molecular genetic data suggest that cellulose synthase (CesA) genes coding for the enzymes that catalyze cellulose biosynthesis (CESAs) in Arabidopsis and other herbaceous plants belong to a large gene family. Much less is known about CesA genes from forest trees. To isolate new CesA genes from tree species, discriminative but easily obtainable homologous DNA probes are required. Hypervariable regions (HVRII) of CesA genes represent highly divergent DNA sequences that can be used to examine structural, expressional and functional relationships among CesA genes. We used a reverse transcriptase-polymerase chain reaction (RT-PCR)-based technique to identify HVRII regions from eight types of CesA genes and two types of CesA-like D (CslD) genes in quaking aspen (Populus tremuloides Michx.). Comparison of these aspen CESA/CSLD HVRII regions with the predicted proteins from eight full-length CesA/CslD cDNAs available in our laboratory and with searches for aspen CesA/CslD homologs in the recently released Populus trichocarpa Torr. & A. Gray. genome confirmed the utility of this approach in identifying several CesA/CslD gene members from the Populus genome. Phylogenetic analysis of 56 HVRII domains from a variety of plant species suggested that at least six distinct classes of CESAs exist in plants, supporting a previous proposal for renaming HVRII regions as class-specific regions (CSR). This method of CSR cloning could be applied to other crop plants and tree species, especially softwoods, for which the whole genome sequence is unlikely to become available in the near future because of the large size of these genomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and Codon-optimized Expression of Structural Protein Hypervariable Region of VP2 from Infectious Bursal Disease Virus

Infectious bursal disease virus (IBDV) is the causative agent of Gumboro disease, an infectious disease of global economic importance in poultry. Structural protein VP2 of IBDV is the most frequently studied protein due to its significant roles in virus attachment, protective immunity, and serotype specificity. The objective of the present study was to improve the expression of hypervariable re...

متن کامل

The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa.

Wood from forest trees modified for more cellulose or hemicelluloses could be a major feedstock for fuel ethanol. Xylan and glucomannan are the two major hemicelluloses in wood of angiosperms. However, little is known about the genes and gene products involved in the synthesis of these wood polysaccharides. Using Populus trichocarpa as a model angiosperm tree, we report here a systematic analys...

متن کامل

IDENTIFICATION, ISOLATION, CLONING AND SEQUENCING APARTIALANNEXIN GENE FROM AUREOBASIDIUM PULLULANS

Background and Objectives: Annexin is the common name for genes and proteins that were identified as calcium-dependent phospholipid-binding proteins. Recently a more complex set of functions has been recognized for this superfamily of proteins including in vesicle trafficking, cell division, apoptosis, calcium signalling, mineralization, crystal nucleation inside the extracellular organelle...

متن کامل

Identification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei

Gamma-amino butyric acid (GABA) possesses several physiological functions such as neurotransmission, induction of hypotension, diuretic and tranquilizer effects. Production of GABA-enriched products by lactic acid bacteria has been a focus of different researches in recent years because of their safety and health-promoting specifities. In this study, glutamate decarboxylase (gad) gene of a loca...

متن کامل

Identification of yeast species from uncultivated soils by sequence analysis of the hypervariable D1/D2 domain of LSU–rDNA gene in Kermanshah province, Iran

Yeasts are a polyphyletic group of ascomycete and basidiomycete fungi characterized by having a unicellular growth phase and sexual stages that are not enclosed in fruiting bodies. An attempt was made to identify yeast species in uncultivated soils collected from different areas of Kermanshah province, Iran, by analyzing hypervariable D1/D2 domain of the large subunit (LSU) rDNA gene sequencean...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 24 5  شماره 

صفحات  -

تاریخ انتشار 2004